Breakout Session 8: Track B

Enhancing Imputation for Clinical Trials: The Path for a Flexible Toolkit

Dr. Vida Abedi Associate Professor, Penn State University

Enhancing Imputation for Clinical Trials: The Path for a Flexible Toolkit

Vida Abedi, PhD, Alireza Vafaei Sadr, PhD, and Vernon M. Chinchilli, PhD

Department of Public Health Sciences College of Medicine, Penn State University

Type 1 Diabetes in Acute Pancreatitis Consortium (T1DAPC) 2024 NIH ODSS AI Supplement Program Virtual PI Meeting - FY23 NOT-OD-23-082 program

March 27-28, 2024

Outline

- Project Motivation
- Plan
- Expected outcome

Missing data in clinical trials

Randomization alone might not be enough.

Additional requirements for an unbiased study are:

- 1) missing data from randomized patients do not bias the comparison of interventions and
- 2) outcome assessments are obtained in a similar and unbiased manner for all patients.

Missing data influences the Results

Various imputation techniques

- Replace the missing value by:
 - <u>Mean (Very common)</u>
 - <u>Median(Very common)</u>
 - Zero fill
- Performing multiple imputations (ex: by mean matching)
- Last observation carried forward
- Worst observation carried forward
- Likelihood estimation
- More advanced ML-based methods to estimate missing value

Pympute

We have developed a web app designed specifically for clinical data from Electronic Health Records (EHR)

Please choose a csv file.

Imputation algorithm is recommended based on data distribution/observations

\rightarrow a FLEXIBLE algorithm

As expected, a FLEXIBLE algorithm outperforms any other algorithm (based on two error metrics)

Using clinical data from MIMIC dataset.

As expected, a FLEXIBLE algorithm outperforms any other algorithm (based on two error metrics)

Using clinical data from Penn State EHR.

Simulate data based on EHR data from Geisinger

Multivariate normal distribution

lab variable II Jap variable 1

$$N(x|\mu, \Sigma) \triangleq \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} exp\left[-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right]$$

Comparing Geisinger vs. Simulated data

- Flexible finds best options for both Geisinger and Simulated data
- Results are much better when using simulated data→caution when studies only report results using simulated data

Missingness and skewness impact on performance

PLAN • Evaluating various imputation strategies

PennState

- Evaluating if imputation results can be improved when clinical trial data is augmented/enriched with simulated patient data
- Evaluating if inclusion of other variables (such as SDoH, past medical history, etc.) can help improve imputation of clinical trial data

Expected Outcomes

- Missing of certain features/variables will not be at random
- Certain features/variables are expected to be missing in a specific group of patient population
- Improving imputation will improve prognosis/diagnosis prediction
- Simulated data can aid in improving imputation results
- A user-friendly tool to help impute clinical trial data

