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Outline

* Project Motivation
* Plan
e Expected outcome



Missing data in clinical trials
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Additional requirements for an unbiased study are:

1) missing data from randomized patients do not bias the comparison of interventions and
2) outcome assessments are obtained in a similarand unbiased manner for all patients.

Missing data influences the uItS
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Various imputation techniques

* Replace the missing value by:
« Mean(Verycommon)

 Median(Verycommon)

e Zerofill
Performing multiple imputations (ex: by mean matching)
e Last observation carried forward
* Worst observation carried forward
Likelihood estimation
* More advanced ML-based methods to estimate missing value




Pleaze choose a csv file.

Data imputation tool.

Browse files

Pymp ute Drag and drlop file here

We have developed -

. Normalize data
a web app designed
specifically for
clinical data from
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Imputation algorithm is recommended based on data
distribution/observations

- a FLEXIBLE algorithm
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As expected, a FLEXIBLE algorithm outperforms any
other algorithm (based on two error metrics)

Using clinical data from MIMIC dataset.
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As expected, a FLEXIBLE algorithm outperforms any
other algorithm (based on two error metrics)

Using clinical data from Penn State EHR.
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Simulate data based on EHR data from Geisinger
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Comparing Geisinger vs. Simulated data

usingsimulated data—>caution 34
when studies only report results
using simulated data 32|
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Missingness and skewness impact on performance
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PILAN ° Evaluating various imputation strategies

» Evaluating if imputation results can be improved when clinical trial
data is augmented/enriched with simulated patient data

» Evaluating if inclusion of other variables (such as SDoH, past medical
history, etc.) can help improve imputation of clinical trial data

—J+ SDoH =

Creating Simulated patients to g « Medical history and comorbidities g
increase diversity and sample size . Family history =
S

i % * Plasma and blood samples -

Imputation Il
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Expected Outcomes

* Missing of certain features/variables will not be at random

* Certain features/variables are expected to be missing in a specific
group of patient population

* Improving imputation will improve prognosis/diagnosis prediction
* Simulated data can aid in improving imputation results
* A user-friendly tool to help impute clinical trial data



Questions
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