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Problem Statement

● Complexity in analyzing gait data.

● Diversity and integration of gait data collection tools.

● Multifaceted challenge in gait data analysis workflow.

● Step-time detection.

● Fall risk prediction.

● Lack of open-access Tools.

● User interface and usability challenges.
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Summary of project

● Aim 1: To create a common metadata schema through datawrangling and harmonization capabilities 

following FAIR data principles (findability, accessibility, interoperability and reusability).

● Aim 2: To leverage harmonized data sets from Aim 1 to create scientific workflows for biomechanical data 

utilization (GaitVis library), which would include data visualization, and cleaning and analysis functionalities to 

enable future AI/ML researchers access to this data through a centralized website (Walkviz).

● Aim 3: To demonstrate an initial use case of the transformed data to develop an AI/ML fall risk predictive 

model for people with chronic stroke (PwCS) using the transformed and corrected data along with clinical 

measures. 
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Related Work and Challenges 

Wagner, Markus, et al. "KAVAGait: Knowledge-assisted visual analytics for clinical gait analysis." IEEE transactions on visualization and 
computer graphics 25.3 (2018): 1528-1542.

KAVAGait

• Kinematic and kinetic data can be collected with different methods and saved in different formats based on third 

party instrumentation and software. Computational expertise and programming skills would be required to import 

these data for AI/ML model development. 

• Data loss is a common issue for motion capture systems, especially wireless systems, which could greatly affect 

the performance of AI/ML models. 

• Step time detection is time consuming, especially for perturbed walking trials. 
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Initial Prototype
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Survey
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Requirement Analysis

● Compatibility with multiple data formats.

● Organize and access patient data in groups.

● Facilitate analysis of a subset of data.

● Data processing (gap filling, filtering).

● Analyze different gait characteristics of patients.

● Analyze statistical measures, artifacts/outliers in the data.

● Compare different groups of gait trials.

● Analyze rehabilitation/disease progression of patients.
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Workflow
Computational Notebook Visualization Portal



Step-time automatic detection method

Model Mean error 
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Error SD 
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Fall-risk prediction models

Your

Trip-fall-risk is 15%

Slip-fall-risk is 75%

ROC curve for fall-risk prediction 
models (Acc > 80%)
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Outcome 
example

Feature # New Feature

1 COM velocity at LO

2 L hip angle at Post-TD

3 Gait speed in gait cycle

4 Max knee flexion in swing 

phase

5 R foot angle at Post-TD

6 L knee angle at Post-TD

7 Toe clearance

8 Max trunk flexion in gait cycle

9 COM velocity at pre-TD

10 R hip angle at Post-TD

11 Trunk angle at Post-TD

12 Max Hip flexion in swing 

phase

13 R knee angle at Post-TD

14 L hip angle at LO

15 Max Gait speed in gait cycle

16 R knee angle at LO

17 L foot angle at TD

Include gait features 



Validation of fall-risk model using video-based 

data post-
processing
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Future Work

● Perform comprehensive user studies across different research labs and clinical settings.

● Support comparison of more than two patient groups.

● Include additional statistical tests (ie., ANOVA, chi-square) to the comparison results.

● Include demographics and clinical measures to further improve the prediction accuracy of fall-risk.

● Add video-based gait data to the current training dataset to enhance the model.
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Highlights of the Ongoing Work

● Omar et al. “eMoGis: Enabling Motion and Gait Visual Analytics with the Support of Exploratory Notebooks and 

Multivariate Data Analysis.” Computer Graphics Forum (Under review)

● Wang et al. “Automatic Step Time Detection In Older Adults During Perturbed Walking.” ASB 2024 Meeting 

Registration (Accepted)

● Wang, S., Nguyen, T. K., & Bhatt, T. (2023). Trip-related fall risk prediction based on gait pattern in healthy older 

adults: a machine-learning approach. Sensors, 23(12), 5536.

● Omar et al. “Comprehensive Requirement Analysis for Data Processing and Visual Analysis of Multivariate Gait Data” 

(In preparation)
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