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Motivation
We want to understand dataset quality

high quality dataset → high performance model

In particular, what indicators diagnose a dataset as
high quality?

Class balance
Dataset size
Other things?

There must be more to quality than class balance

and size

Just look at these two datasets →

Same class balance
Same number of images
But dataset 1 clearly has higher diversity
And thus perhaps a higher quality?

Our starting hypothesis is that diversity 

contributes to quality independently of class

balance (and of dataset size)

Figure: Dataset 1: wasps vs grasshoppers (more diverse)

Figure: Dataset 2: wasps vs grasshoppers (less diverse)
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This framework generalizes the Hill numbers [4]

Like Hill numbers, this framework accounts for the frequency with which
different types of things occur
Unlike Hill numbers, it also accounts for the similarities between

types. Higher similarities lead to lower diversities

In the context of an image classification training set . . .
We will consider each image to be a unique type

The similarity between images will be based on their euclidean distance
in pixel space (smaller distance higher similarity)

We can also treat class balance in this framework by using a similarity

matrix based on sharing the same class label
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Methodology

1 Collect a number datasets

PathMNIST, BloodMNIST, OrganAMNIST, and OrganCMNIST
from MedMNIST [5, 6]
Several additional datasets, including those used in Madani et al.
[7] and Chinn et al. [8]

2 From each dataset, sample the training set to create many
subsets

3 Train a neural network classifier on each subset, and measure

the performance of this classifier against a test set (common
to subsets from the same parent dataset)

4 Measure an assortment of diversity indices for each subset

(including class balance)

5 Use linear regression to measure how much variation in model 

performance is explained by different sets of diversity indices.

Figure: Images from some of the selected
datasets
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Using only class balance and size, we achieve an R2 of
approximately 68%

I.e., these two features jointly explain about 2/3 of the variance
across all datasets in the performance of models trained on those
datasets.

← Here we have the R2 by feature
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is included.
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Subset size becomes the third most important

A different diversity measure from the diversity framework turns
out to be more important than subset size
A second diversity measures from the diversity framework turns
out to be similarly important

The top four features explain about 77% of the variance in
performance
The remaining features add only an additional ≈ 1%

In summary, we have quantified the importance of class
balance, and demonstrated that other diversity indices 

contribute to dataset quality

We are testing on multiple datasets,and would love to test 
on more. If you have data that might benefit from this 

approach,we would love to collaborate, just reach out!
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Thank you for attending my talk!
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