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Cavernous Angiomas (CAs) are fairly common
cerebrovascular anomalies
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Cerebral CAs behavior is unpredictable

T,-weighted MRI

CAs are abnormal clusters of enlarged capillary vessels embedded
In normal brain or spinal cord tissue

2 forms : sporadic/solitary or familial/multifocal

CA without prior symptomatic hemorrhage (SH)
» Low initial risk of SH (0.4 to 2.4% per year)

CA with recent SH
» High risk of rebleeding after initial SH (Al-Shahi et al., 2012)
« 10-fold increase
« 3.8 10 29.5% per year

in familial patient



A complex interplay of angiogenesis and inflammatory
processes
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4 categories of biomarkers defined by the FDA-NIH Biomarker
Working Group

* A relevant biomarker may reflect chronic disease over the patient’s lifetime, recent
acute clinical activity or predict future events (Amur et al., 2015).

« 4 categories of biomarkers:
v Diagnostic distinguish patients with a particular disease.
v Prognostic provide information on the likely course of disease in an untreated
individual.
v’ Predictive provide a forecast of the potential responses (favorable or unfavorable)
to one or more specific treatments.
v Response are dynamic assessments of a biological response after a therapeutic
Intervention, include:
» Safety indicating biological adverse effects in response to treatment.
» Pharmacodynamic indicating the intended activity of the drug.
» Efficacy-response or surrogate endpoints predicting a specific
disease-related clinical outcome.




Plasma molecules effectively combine into a diagnhostic and
prognostic biomarker of hemorrhagic activity of CCM

Number of molecules in the biomarker

combination (of 9)

Lyneetal., 2019
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Methodology to Identify Candidate Biomarkers

Discovery cohort
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Independent validation cohort of CASH vs non-CASH
patients (n=20/20), propensity matched for age, sex,
phenotype, and brains}em lesion location
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Multi-Omic Datasets in Diagnostic and Prognostic Discovery
Cohorts
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Cleaned and homogenized dataset

Data transformationand NA
imputation

Pilot cohorts:
General
Workflow

Feature selection: ElasticNet &
Logistic models

Comparison across models based on
subsets of the selected features




Pilot cohorts: General Workflow

Database structure

Cleaned and

homogenized dataset Vetaboltes
Patient ID
{ Metabolite 1
—Label
Metabolite n
Patient
miRNA
Features »| Patient ID
Patient ID
Feature ID < Age

. miRNA 1
- Feature type Sex
—Label
Feature name CCM phenotype
miRNA n

Brain stem lesions

Proteins CASH Condition

Patient ID Match pair
y Protein 1
_—
—Label
Protein n

« Homogeneity across tables: Universal
patient ID.

 Tidy format for data analysis and
repository sharing.
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Pilot cohorts: General Workflow

Data transformation and
NA imputation

Correlation with CCM

status and individual
regressions

Data transformation
Test of normality (Shapiro-Wilk test)
« Metabolites: linear
* Proteins: log,
* mMIRNA log,

NA imputation
* Model-based imputation method
« Hot-Deck initialized

Individual logistic regression



Pilot cohorts: General Workflow

Feature selection
« Elastic Net optimized for accuracy and

- repeated k-fold cross-validation.
« Logistic regression over the complete
set and conditional logistic regression to
- evaluate the performance of

propensity-match.

3 Reduced models

e Subset combinations of n elements,
Feature selection: Elastic al’l‘anged by highest AUC.
Net & Logistic models
Best models criteria

Comparison across  Highest AUCs for a given number of
models based on subsets features and lowest number of unique
of the selected features

molecule types.




Subset models - AUC Comparison

Total model considered: 9948 (Combinations from 1 to 6 elements max)
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Feature

Subset models - AUC Comparison

Distribution of features per model Frequency
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Future work and Perspective

* |dentification of the best diagnostic and prognostic models.
« Best models evaluation in testing cohorts: n > 260 patients.

* Model performance in relation of the known confounders of CCM clinical activity (e.g.,
CCM phenotype, lesion localization, gender and age).
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