Breakout Session 8: Track B

Battling Bias in Sepsis Prediction: Towards an
Informed Understanding of EMR Data and Its
Limitations

Dr. Andre Holder
Assistant Professor, Emory University



Battling Bias in Sepsis
Prediction: Towards an Informed
Understanding of EMR Data and

It's Limitations

Supplement tile: Ethics and Equity in Developing
Artificial Intelligence models for Patients at Risk of
Sepsis
Supplement to: Characterizing Patients at Risk for Sepsis
Through Big Data

Andre L. Holder, MD, MS, FCCM
Assistant Professor of Medicine
Division of Pulmonary, Allergy, Critical Care & Sleep Medicine

Emory University School of Medicine
Altanta, GA, USA



Sepsis is common and deadly

e Most commohn cause of
death in ICUs

* 5.3 million deaths per year
globally

* “True” inpatient mortality
unchanged
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Fleischmann C et al. Am J Respir Crit Care Med.2016;193:259-272.
Angus DC et al. Crit Care Med.2001;29:1303-1310.
Rhee et al. JAMA. 2016;318:1241-1249



Earlier antibiotics = better outcomes,
S0... 777?77

Adjusted Odds Ratios
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Liu et al, Am J Resp Crit Care Med 2017;196(7):856-63



Bias

We define, for the first time, algorithmic bias in the context ot Al and health sys-

tems as: “the instances when the application of an aleorithim compounds existinge

Inequities in socioeconomic status, race, ethnic background, religion, gender, dis-

ability or sexual orientation to amplity them and adversely impact inequities in

health systems.”

* Underrepresentation in training

* Measurement bias
* Pulse oximetry
* Temporal thermometers

* Implicit bias in:

* Care (e.g. paininthe ED)
Panch etal. J Glob Health 2019;9(2):020318

* Data COlleCtl on Charpignon et al, Crit Care Clin 2023;39:751-768
Sjodingetal, N Engl) Med 2020;383:2477-2478
Bhavani et al, JAMA 2022;328(9):885-886
Van der Vegt et al. JAMIA 2023;30(7):1349-1361



Why this matters (sample structured data)
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Project summary
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* Algorithm-focused component:

Develop a novel health equity metric



Focus group details

* Focus group goals

1. ldentify the groupings at risk

2. ldentify causes of unequalsepsis care that might also contribute to
Inequitable prediction

3. Discussalgorithmic choices that could exacerbate inequalities

4. Understanddifference between perceived and actual risk of inequitable
prediction

* 14 participants (4 clinicians, 3 data scientists, 2 ethicists, 5

advocates)
* Three sessions in 2023: 1/12, 1/26, & 1/30



Social bias effects on critical care prediction

Inequities in community resources
(e.g., structural / systemic racism,
rural vs urban)

SDOH (health literacy, income

inequality, access to quality food & Community Personal clinician biases
education) Mistrust

Clinician bias in Bias in syndrome
acquisition: line of recognition (e.g. pain
guestioning and workup suggestive of sepsis)

Disparities in
early
presentation

Bias in missingness?

— Diagnostic ]
disparities

\ ALGORITHMIC
BIAS FOR
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* Alldemographic labels should be considered



Subgroup Performance Assessment, Detection &
Evaluation (SPADE)

Model Development Pipeline Algorithmic Bias Detection Pipeline

Model Predictions

Raw Patient Data (F2-Score)

¥

Data Pre-processing &
Feature Engineering

Integrate Patient

Temporal Splits Demographic Data
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Training set Validation set Testing set

v

Algorithmic Bias Detection

Ensemble Model

Figure 8: Algorithmic bias detection pipeline.



Stratified 5-Fold
Cross-Validated

Splits

Temporal Splits
(hours)

Adult (age = 18) ICU
patient visits identified
between 2016 and 2020,
(n=119,733)

I

ICU patient visits with =
24 hours of continuous vital
and lab/treatment data
available.
(n=13,292)

Number of sepsis cases = 4,772 (35.9%)
MNumber of non-sepsis cases = 8,520 (64.1%)

Data pre-processing & Feature Engineering

ICU Admission: 2016 — 2018

Sepsis cases = 2,953 / Non-sepsis cases = 5,177
ICU Admission: 2019 — 2020

Sepsis cases = 1,819/ Non-sepsis cases = 3,343

: ICU IcU i
Temporal : Admission: Admission: L
Partitioning | | 2016 - 2018 2019 - 2020 :r
] (n =8.130) (n=5162) |
e —— ]
! i
(O OO ooy
Training set Walidation set Testing set
XGBoost Classifier
&
Bayesian Uptimization
Ensemble
Model
Output Optimal
Results Threshold

Figure 5: Data pre-processing and model development diagram.
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sis model development pipeline

e Model: XGBoost

* Bayesian optimization
* Tree-structured Parzen
Estimator (TPE) approach
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SPADE identifies bias by differences from mean
performance within the cohort

on_ven%s@é-}
o mse = U.
* CART analysis samples = 3873
* Test data only (2019-2020) Trui/ \F:llse
* 8 input (discriminating) Wt (R
. les = 2573 les = 1300
features: "Vallie - 0.138 "Vallie - 0.377
* Race, age, gender, incarceration
status, distance to hospital (based SR OMBI35<05) (" siddev =022
on home zip code), homelessness, | samples = 1415 | | samples = 1158
value value = 0.202 value = 0.059

insurance type, Elixhauser
comorbidity index

. . . . stdde\; stddev = 0.39 stddev = 0.32
* Optimization based on primary HF'{%‘"SL%#} {%Z%}
sepsis model (e.g., accuracy) - =2

* Adjusting SPADE optimization
changes the output

stddev = 0.38
mse = 0.144
samples = 170
value = 0.781




Advantages over other approaches

* Algorithm agnostic

* No a priori assumptions

* Captures intersectionality

* Not just limited to use on sensitive labels like race

on_vent<05
mse = 0.122

samples = 3868
value = 0.218

True False

blood_urea_nitrogen_(bun)_max < 26.5

mse = 0.095 mse = 0.137
samples = 2570 samples = 1298
value = 0.138 value 0.377
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I

albumin_mean <3.122 albumin_min < 3.25 blood_urea nltrogen (bun)_max <13.75 stddev = 0.29
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samples = 1813 samples = 757 samples = 1135 samples = 163
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/ l i \
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mse = 0.076 mse = 0.164 mse = 0.164 mse = 0.117
samples = 191 samples = 100 samples = 103 samples = 100

value = 0.098 value = 0.275 value = 0.386 value = 0.179




Challenges

* Ethics-focused component

* How should we define bias?
* Participants confused about the ask
* No qualitative analysis background

Fitting focus group resultsinto
existing ethical frameworks

* Algorithm-focused component
* Operationalizing bias
* How?What metrics?

* Working within the limits of some
labels (e.g., SES, incarceration)
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Fig. 1 Framework for digital health equity. National Institute on Minority Health and Health Disparities Research Framework Expanded for

Digital Health Equity.

Richardson et al, npj Digital Medicine (2022) 5:119




Future research

Primary model tested
for patient level bias

* Defining causes of bias (lack
of data source variability? ormary maatoutput [ primary model ot
. (wide Cls) (narrow Cis)
Measurement bias?)

SIBER bias detection platform

* Implementation into an
existing Al infrastructure

Sample output: Sample output:

Sample output:

“This model needs to be
trained on more patients in
this demographic to provide a
prediction with adeguate
confidence that predicts as
well as in other demographic
groups.”

“The predicted risk in “The model cannot provide a . Sample OUt.PU.t! .
this patient is predicted risk due to biased "The predicted risk in this
output from patients in this patient is , but the
demographic. It will be reviewed model may need additional
by the bias detection board for training on more patients in
the best corrective action. Please this demographic to be more
use your best clinical judgement confident.”
to select the best treatment
option for this patient.”

https://www.hsph.harvard.edu/ecpe/how-to-prevent-algorithmic-bias-in-health-care/



Summary

* We should probably assess bias in a very inclusive list of
sociodemographic and comorbidity labels, but know their limits

* A post hoc, model-agnostic approach to identifying bias within
certain patient subgroups is feasible

* SPADE has advantages over a priori decisions of bias detection
* Output can vary for the same model based on multiple factors

* This approach will need to be prospectively and externally
validated, and operationalized in an actionable way to improve
equity in sepsis prediction
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