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O Oral and oropharyngeal squamous cell carcinoma (OSCC) together rank as the sixth most
common cancer worldwide, accounting for ~400,000 new cancer cases each year.

= Two-thirds of these cancers occur in low- and middle-income countries (LMICs), with very high rates in
South and South-East Asia.

= While the 5-year survival rate in the U.S. is 62%, the survival rate is only 20-40% in the developing
world.

= The poor survival rate is mainly due to late diagnosis. Access to cancer prevention, screening, diagnosis,
and treatment is a challenge in many LMICs, especiallyin rural areas with limited health infrastructure.
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Q0 We deweloped customized multi-modal device for point-of-care oral cancer screening and conduct oral cancer screening
using this customized device across multiple clinics in India, reaching thousands of patients within high-risk populations.
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I}E&I Dataset of oral cancers from high-risk
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L Demographics information of the dataset, such as distribution of the number of subjects, gender,

age and etc. across multiple centers.
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O Data compatibility with Al/ML tools

» The dataset includes patient information such as lesion sites, tobacco use history, sex, age,
employment status, and other subjective descriptions that are not directly compatible with Al/ML
tools like PyTorch or TensorFlow.

= These strings or categorical data types contain essential patient information, which could potentially
improve the accuracy and effectiveness of AI/ML algorithms for automatic oral cancer diagnosis.

= Therefore, we have converted the non-numeric features into numeric ones that can be directly used
by AlI/ML tools.

Sex Age Employment Cigarette Beedi Tobacco chewing  Tabocco chewing frequency Arecanut Arecanut che Spirit Lesion site
Female 40 Home-Maker Never Never Never Current Daily Newver Left Cheek
Female 37 Home-Maker Never Never Never Current Weekly Newver Right Cheek
Female '35 Home-Maker Never Never Never Current Daily Newver Left Tongue
Male o Service Never Never Current Daily Current Daily Newver Right Cheek
Female 75 Home-Maker Never Never Current Daily Current Daily Newver Left Tongue
Male 75 Unemployed Never Current Never MNever Newver Left Lower Lip
Female 60 Home-Maker Never Never Current Daily Current Daily Newver Left Tongue
Male 52 Unemployed Never Never Never MNever Newver Right Lower Lip
Male "5 Service Never Never Current Daily MNever Newver Left Cheek

Non-numeric patient clinical information in the dataset

Converted numericdata
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O Identify the blur, low-quality images from the dataset

= As our dataset was captured during oral cancer screening in low-resource environment using
compact device, some blur and low-quality images are inevitable in the dataset.

= Wk have identified these instances using the variance of the Laplacian method. Images with lower
score typically indicate blurriness. We've flagged these images for researchers' attention.

» Researchers using this dataset can review the identified blurry images and make a decision about
their exclusion before proceeding with AI/ML model development.

Good images with higher score

Blurry images with lower score
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O Estimate uncertainty in the data labelling — label error detection
= As a large dataset that was labelled manually, erroneous or mislabeled data is inevitable, which
can hinder the performance of trained AI/ML models due to labeling inaccuracies.
= To identify potential label errors within the dataset, we utilized the confidence learning method.

= Confident learning (CL) is a data-centric approach which focuses on label quality by
characterizing and identifying label errorsin datasets, based on the principles of pruning noisy
data, counting with probabilistic thresholds to estimate noise, and ranking examples to train with
confidence.

Q After running the confidence learning, the number of potential label error data detected in each modality is
showed below.

Potential label error images/ All images Probe autofluorescence image Probe white light image
Suspicious 272/2897 284/2897
Non-suspicious 488/6069 374/6069

O Challenge: due to the limitation of this algorithm and similarity of oral lesions, distinguishing whether the
detected samples were mislabeled or difficult-to-diagnose cases (resulting in the failure of the label error
detection method on this dataset) presents a challenge.

O We have reached out to our collaboration specialists to review the identified cases and enhance the overall

accuracy of the dataset labeling. E
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[ Pixel-level annotation for the dataset

= While an Al/ML model trained with image-level labels may correctly classify an oral cancer
image, however, there is a possibility that the model may in fact have its attention focused on an
irrelevant region during decision-marking, thereby significantly impacting the model's reliability.

= Pixel-level annotation offers a more detailed insight into the exact location of lesions. This
information could help the researchers utilizing this dataset and aiding AI/ML models in directing
their attention to regions of interest during training.

= Therefore, we are enriching this dataset by providing pixel-level annotations, segmenting the
lesion areas within the images.

Image-level
label
Pixel-level
an notation OPML and malignant

lesion areas

Normal, benign and
background areas

Malignancy Lichen planus
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O Use of the transformed data in AlI/ML applications
— Oral cancer image classifier development using vision transformer

— Improve the model interpretability and reliability using both image-level label and pixel-level
annotation
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J Future works

= Oral oncology specialists are reassessing the data identified as
potential label errors.

= Oral oncology specialists are enriching this dataset by providing
pixel-level annotations.

= Multi-class oral cancer Al classification algorithm development using
the multi-modal dataset.

- We're developing a multi-class oral cancer Al classification algorithm using
the multi-modal dataset. This involves utilizing different modalities of images
and clinical information to enhance classification accuracy.

= Interpretable and trustworthy Al model development using both
Image-level labels and pixel-level annotation.
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